

-
~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~

-
~~~

Report No. 3972 Bolt Beranek and Newman Inc.

I

DEVELOPMENT OF A VOICE FUNNEL SYSTEM

QUARTERLY TECHNICAL REPORT NO. 1
15 July 1978 to 31 October 1978

30 Novem ber 1978

Th is research was sponsore d by the
Defense Advanced Research Projects
Agency under ARPA Order No.: 3653
Contract No.: MDA9O3—78—C— 0356

- - Monitored by DARPA/IPTO
Effect ive date of contract: 1 September 1978
Contract Ex piration date: 30 November 1980
Princ ipal investigator: R. D. Rettberg

D D C
Prepared for: DEC 4 1918
Dr. Robert E. Kahn , Deputy Director
Defense Advanced Research Projects Agency
Information Processing Techniques Office B
1~~OO Wilson Boulevar dArling ton , VA 22209

The views and conclusions contained in this doc ument are those of
the author an d should not be interpreted as necessarily
represent ing the official policies , e ither express or implied , of
the Defense Advanced Research Projects Agency or the United
States Government.

D!~ TRI3UTION 8TATEMENT K1
Appio~.d for public re1.a~S1

~S.tzth~~.cm D~1tm1t.d ‘

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (WRon D.t. LNftOP~~ __________________________________

~~~~~ b4~~~~~
1• w iI &1ekI~~~~A~~~~u~~kI D A I

~~~ 
READ INSTRUCTION S

‘~~~~~u~~~~~~ U ~~~~~~um~~~~ I ~~~I Ui’ r ~~~U SEFORE COMPLETIN G FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER

4. TITLE (.id SubHtS.) 5. TYPE OF REPORT & PERIOD COVERED

DEVELOPMENT OF A VOICE FUNNEL SYSTEM,
Quarterly Technical

~ 197QUARTERLY TECHNICAL REPORT NO. 1 C
— 4. PERFORMING ORG. REPORT NUMBER

__
3972

7. AuTNOA(.) •• CONTRACT OR GRANT NUMBER(.)

R. Rettberg MDA9O3-78-C-0356 -~~~~~

S. PERFORMING ORGANIZAT ION NAME AND ADORESS 10. PROGRAM ELEMENT. PROJECT , TASK
AR EA & WORK UNIT NUMIERS

Bolt Beranek and Newman Inc. ARPA Order No. 3653
SO Moulton Street, Cambridge, MA 02138

II. CONTROLLING OFFICE NAME AND AOOR ESS 12. REPORT DATE

Defense Advanced Research Projects Agency 13 u E$
1400 Wilson Blvd., Arlington , VA 22209 29
14. MONITORING AGENCY NAME & AOORESSOI ditf .,..i f Iron, ConiroSlSng Offlc •) IS. SECURIT ’V CLASS. (of thin r.p.n)

Unclassified
IS.. OECLAS SIFICAT IO N/O OWNORA OIHG

SCHEDULE

I S . DISTRIBUTION STATEMENT (of thi. Rlport)

DISTRIBUTION STAT T

UNLIMITED for public releaa ;
~
‘ DSatzthut~o~ U~lixnft.d

I?. OISTRIIUTION STATEMENT (of ft. .b.iract siii.r.d In Block 20, II dlfl.r.n t (ton, R.ooK)

IS, SUPPLEMENTARY NOTES

15. KEY WORDS (ConUmg. on r.v .r.. .id . If n.c... y d Id.fItIfY by block nsonb.r)

Voice Funnel, Digitized Speech, Packet Switching, Butterfly switch,

Multiprocessor

20. ABSTRACT (ConUnu. a,, ,., ~~.. aid. Ii n.c.a..ay .id idoniity by block ntm,b.r)

This quarterly Technical report covers work performed during the period
noted on the development of a high-speed interface, called a voice funnel,
etween digitized speech streams and a packet-switching communications

network.

DO 1 JAN 73 1473 EDITION OF I NOV SI IS OSSOLETE UNCLASS IFIE D
SECURITY CLA SS IF IC A n O N OF TNIS PAGE (O~~ n Data tr,(.,.d)

Report No. 3972 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

1. Introduct ion 1

2. Processor Selection 3

2.1 Processor Candidates 3

2.2 Address Space 5

2.3 Z8 000 Performance Evaluation 7

2.3.1 PDP—ll Benchmark 8
2.3.2 Z 800 o Benchmark 10

2.3.3 A Discussion of the Benchmarks 11

2.3.3.1 Code Size 11

2.3.3.2 Calling a Global Routine 12

2.3.3.3 Returning from a Routine 12

2.3.3.LI Saving and Restoring Registers 12

2.3.3.5 Local Space Allocation and Deallocation 13

2.3.3.6 Sett ing Tip Parameters for the Call 13

2.3.3.7 Making Parameters Accessible 13

2.3.3.8 A Typi ca l Lo op Iteration 1~4

2 . 3 . LI Conclusions from the Benc hmark 1L~

3. Processor Node Issues 17

3 .2 Memory 18

3 .3 Memory Management 19 ~~~~

3.~ Local I/O 22

—S

~~~~~~~~~~~ ~~~~
_____



Report No. 3972 Bolt Beranek and Newman Inc.

1. Introduction

The combination of digital speech techniques with

packet—switch ing technology can significantly increase the future

voice transm ission capability of the Department of Defense. To

achieve this comb ination , however , requires a high speed

interface between the digitized voice and the communications

network. Bolt Beranek and Newman Inc. has been awa rded a

contract to desi gn and develop a system which meets this need.

- The system , called a Voice Funnel , is a c o n c e n t r a t o r for

digitized speech streams; it can combine on the order of 100 to

1000 streams with a high combined data rate (in the range of’ 2 to

20 Mbps).

The Vo ice Funnel requires high data rate support; many

connections ; and the ability to perfo rm processing in order to

cont ro l  the mach ine an d the data s t reams as well as to su pport

sophisticated hardware and protocol interfaces to both the

vocoders and the high bandwidth network. A new machine

configuration wh ich meets these requirements is described in BBN

Report No. 3501 , “A New Multiprocesso r Architecture. ” We w ill

assume familiarity with that report for the discussions here.

This Quarte ’ly Technical Report covers the activity during

the f irs t  ‘few months of this project. During this time , most of

the effort has concentrated on the design of the machine which is

the foundation of the Voice Funnel . This machine consists of a

number of independent process ing nodes which are interconnected

_ _  _ _ _ _  _ _ _



Report No. 3972 Bolt Beranek and Newman Inc.

by a switch. The design of this switch is perhaps the most

unique portion of this machine; it is certainly the most

thoroughly studied and reported portion (see BBN Report No.

3501 ). During this quarter , we have made significant progress in

defining the processing node and have continued our design of the

switch. In light of ’ the previous report , th is Qu a r t e r l y

Technical Report concentrates on the processor choice and

processing node design .



• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ • - - ~~~~~—-~~~~
. -. - . -•---.--- - .  ~~

- -.-— -• •.- ,— -..- -...
~~~~

-—— . - .- - -•-

Report No. 3972 Bolt Beranek and Newman Inc.

2. Processor Selectio n

The processor we have selected for use in the Voice Funnel

is Zilog ’s Z8000. This machine has been announced with delivery

expected before the summer of 1979. We have selected it because

1) it is a 16—bit microprocessor , 2) it has a r ea sonab ly h igh

instruction execution rate , 3) it can manipulate a 23—bit virtual

add ress space , and J4) it has a compatible memory managemen t

r device.

F
A review of the com peting processor candidates will be

presente d in th is section , followed by a discussion of address

spaces. Finally, s ince we f ind the Z8000 a t t r a c t i v e as a

processor , we will examine its instruction set and performance

[through one benchmark programming example.

2.1 Processor Candidates

[i There are three categories of candidates for the processor

in the Voice Funnel:

1. Commercial minicomputer (e.g. PDP— 11)

2. Commercial micro processor

3. Custom microprogramme d processor

The advantage of a commerc ial minicomputer is the commitment

on the part of the manufacturer : it is likely that compatible

ri processors which are more powerful and/or lower in cost will be

U produced in the future. Furthermore , a com plete line of

- 3 -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Report No. 3972 Bolt Beranek and Newman Inc.

compati ble equipment and software is probably available. For

microprocessors this has been true only over a very limited

range. For exam ple , the 8080 is now ava ilable at lower cost and

in much faster vers ions , but the new architecture , the 8086 , is

onl y awkwardly compatible with the 8080. Similarly , Zilog w ith

their Z8000 and Motorola with their M68000 have developed new

architectures for their new products. A custom processor is even

worse in th i s  respect , since every produc t enhancement must be

su pp l ied by local effort.

The advantages of a commercial microprocessor are its small

size , low cost , and multiple sourcing. The first two are

particularly important since we expect to have many processors in

our sys tem , wh ich puts a premium on a processor which has a high

performance— to—size ratio as well as a high perfo rmance—to—cost

ratio. We woul d also like to have a machine which adapts well to

technolo gical advancement. This is , a f t e r  all , the age of LSI

and even VLSI. It is clear that these technologies offer so much

tha t  it ‘is hard to avoid taking advantage of them . The pattern

of multiple sourcin g is simply an added benefit. Multiple

sourcin g is not common in the arena of’ commercial minicom puters ;

the vulnera bility that results from a single supplier can be

serious. A custom machine can be of moderate cost (between a

commercial m ini and a micro) but its size is much larger than a

micro .

— 4 —



Re port No. 3972 Bolt Beranek and Newman Inc.

The advantage of a custom microprogrammed processor comes

from its being custom ; it can be designed to fit well into the

overall structure of the machine. If other ava ilable machines

have serious system deficiencies , a cus tom processor  desi gn coul d

be a better choice than trying to correct the problem or trying

to work aroun d it. Fortunately, as we w ill see la ter , t he re  are

available machines which are acceptable.

The secon d advantage of a custom microprogrammed processor

comes from micro programming . This permits efficient I/O device

design and flexibility in the macro—level machine because of the

very h igh rate of microinstruction execution. In raw cycle time ,

however , the mic ro processor shoul d e v e n t u a l l y  win  since it

eliminates inter— chip signals.

2.2 Address Space

Perhaps the most important criterion that we have used to

select a processor is the need for a large address space. There

are two address spaces involved : the physical address space and

the v irtual address space. The physical address space must be

large enough to hold all of the memory in the machine. The

v irtual address space must be large enough to hold the entire

process: its cod e and all of its data .

Exper ience has repeatedly shown that a 16—bit virtual

address space is simply too small. Mapping hardware has often

been suggested as a mechanism which can be used to expand the

— 5 —



Report No. 3972 Bolt Beranek and Newman Inc.

virtual address space. While a mapping mechanism is an

appropriate mechanism for providing a virtual machine to user

processes as in an operating system , its use for expansion of the

v irtual address space is incorrect. The reason for this is that

it is too expensive and too awkward to set the maps prior to

every memory reference. As a result , the program must  be

organized around the use of the maps . This is too large a burden

to place on the programmer. As a result , programs end up being

squeezed into the true . v ir t ua l  add ress space (as is t he case wi th

the UNIX kernel ) or being chopped into many separate processes ,

with a serious increase in complexity and a serious loss of

effic iency.

It is not clear how large these two spaces must be. An

argument is made later that a 24—bit physical address space is

ad equate  for  the Vo ice Funnel , but it is v e r y  ha r d to know how

large a v irtual space is required; at least we know that an

address space of 16 bits is too small.

Fortunatel y, Zilog ’s Z8000 provides both a large physical

and a large virtual address space. Although this machine is a

16—bit processor , it has fac il i t ies wh ich perm i t m a n i pu l a t ion of

23 bits of virtual address. Furthermore , Zilog has announced a

memory— m anagement device which supports a 214_bit physical address

space.

— 6 —



I
Report No. 3972 Bolt Beranek and Newman Inc.

2.3 Z8000 Performanc e Evaluation

It has been po inted out that one of the major advantage s of

• the Z8000 is its speed . To investigate this and to gain some

* insight as to the quality of the Z8000 we will investigate one

benchmark program . From that benchmark we will get estimates of

Z8000 speed and code size . As a point of reference , we will use

- 
the PDP— 11.

The benchmark consists of a routine that allocates a large

local array and calls a rout ine wh ich returns the sum of tha t

arra y. This benchmark exhibits calling costs , allocation costs ,

• looping ease , and a reasona b le amount of stack mani pulat ion. The

following BLISS— il program is the benchmark:

MODULE BenchMark (OPTIMIZE ,SAFE ,NOUNA MES ,FINAL , MAIN )
= BEGIN

GLOBAL ROUTINE WordArraySum(Array ,Size)=
BEGIN

WORD LOCAL sum ,pointer ;
sum 

— 
0;

pointer 
— 

.arra y;
DECR counter FROM .Size TO 1

DO BEGIN
sum 

— 
.sum + . .pointer;

pointer — .pointer + 2;
END;

sum
END;

GLOBAL ROUTINE Bench=
BEGIN

WORD LOCAL vector [300];
WordArraySum (vector ,300);

END;

E N D  ELUDOM



Re port No. 3972 Bolt Beranek and Newman Inc.

From this benchmark we can hope to get reasonable measures

of the costs of the follow ing activities (the abbreviations in

parentheses will b e used in later ta b les):

Callin g a global routine (Call)

Returnin g from a routine (Ret)

Re gister allocation (Sav+Res)

Parameter setu p (Farm Set )

Parameter access (Farm Aec)

A typical loop iteration (Loop)

Local space alloca tion (Loc Al ic)

Local space deallocation (Loc Dallc)

2.3.1 PO P— il Benchmark

The BLISS—l i compiler produced the following cod e for this

benchmark. The code is verbatim except for comments which have

been added to the PDP— ll code for clarity.

— 8 —



- 

~~~~ I

Report No. 3972 Bolt Beranek and Newman Inc.

BLIS 11 V .78095 Thur sday 21— Sep—78 11:01.26 BENCH.B11
.PDP 1O
0001 MODULE BenchMark (OPTIMIZE ,SAFE ,NOUNAMES ,FINAL ,MAIN)

BEGIN
0002

.SBTTL GLOBAL ROUTINE WordArraySum (Array ,Size)=
0003 GLOBAL ROUTINE WordAr raySum (Array,Size)=
0004 BEGIN
0005 WORD LOCAL sum ,pointer;

• ; 0006 sum — 0;
0007 pointer — .array;
0008 DECR counter FROM .Size TO 1
0009 DO BEGIN
00 1 0 sum

—
.sum + . .pointer;

0011 pointer
—

.pointer + 2;
0012 END;
0013 .sum
001 14 E N D ;
0015

.TITLE BENCHMARK

.CSECT BEN C.C

WORDARRAYSUM:
JSR R$1 ,$SAV2 ; Allocate working space• CLR R$0 ; Clear sum
MOV 12(SP) ,R$l ; Get Farms: Ri <— Array pointer
MOV 10(SP),R$2 ; R2 <— Array size
BR L$14 ; Enter ioop , chec k size zero

L$3: ADD (R$l)+ ,R$0 ; Loop: Add word , advance pn tr .
DEC R$2 ; Decrement counter

L$~4: BGT L$3 ; Repeat if more entries
RTS PC ; Go home , (Get Regs: corout ine)

ROUTINE SIZE: 12

— 9 — L

Report No. 3972 Bolt Beranek and Newman Inc .

.GLOBL WORDARRAYSUM

.SBTTL GLOBAL ROUTINE Bench:
0016 GLOBAL R O U T I N E Bench:
0017 BEGIN

; 0018 WORD LOCAL v ec t o r(30 0] ;
0019 W o r d A r r a y S u m (v e c t o r ,300)
0020 END;
0021

.CSECT B E N C . C

BENCH:
• SUB #1130 ,SP ;Allocate : Local array, 300 words
• MOV #2,— (SP) ; Set Farms : Array pointer

ADD SP ,€SP ; To arra y above this on stack
MOV #45 14,— (SP) ; Array size is 300 decimal
JSR PC ,WORDARRAYSUM ; Glo bal routine call
ADD #1 1314 ,SP ; Deallc: parm s and local array
RTS PC ; Go home

ROUTINE SIZE: 12

.GLOBL BENCH
0022 END ELUDOM

.GLOBL $SAV2

.CSECT B E N C . G

$BREG : .BLKW 1

Size : 26+0
Run T ime: 0 Seconds
Core Used : 12K
C o m p i l a t i o n Complete

. E N D B E N C H M A R K

2.3.2 Z8000 Benchmark

For comparison with the PDP— 11 cod e, here is a han d—coded

version of the benchmark for the 28000. The vers ion shown here

is the most efficient way we could find to do the task , compared

to , say, the cleanest way to do the task.

— 1 0 —

Report No. 3972 Bolt Beranek and Newman Inc.

WORDARRAYSUM:
• PSHL RR 2 ; Allocate: Reg for array pointer

PSH R14 ; Reg fo r a r r a y coun te r
I CLR RO ; Clear the sum we are making

LDL R R 2 , 16 (S P) ; Get P a r m s : A r r a y pointer
LD R 14 , 1 2(SP) ; A r r a y s ize

I JR CLR , L$2 ; I f size is zero: sk ip loop
- L$1 : ADD RO ,(RR2) ; LOOP : Add n e x t a r r a y e n t r y
-

INCR R2 ,#2 ; advance the pointer
f DJNZ R14 ,L$1 ; decr c n t r and loop?
I. L$2: POP R4 ; Deallocate : Both

POPL RR2 ; Regs

1 RET ALWYS ; Go home , condition: always

BENCH:
• SUB SP ,1/(113O) ; Alloca te : Local word array[300]

PSHL (SP),SP ; Set up Farms: Push and
INCR (SP),#4 ; align array pntr
PSH (SP),#14544 ; and array size 300
CALL WORDARRAYSUM ; Call global routine
ADD SP ,#(il3O+6) ; Deall: Farms and Array
RET ALWYS ; Go Home , con di t ion: Always

2.3.3 A Discussion of the Benchmarks

• . We will discuss those two routines in the context of the

[categories mentioned in Section 2.3.

2.3.3.1 Code Size

Both ’rout ines are about the same size . The lack of a

un iform dual—operand addressing structure for the Z8000 might be

lj expected to cause larger code sizes in some situations. For

exam p le , both routines need to do some manipulations of

ii parameters that are on the stack. The POP— li version manages

r t h i s c l e a n l y s ince memory can be treated identically to

registers. The Z8000 manages it by having a convenient

U instructio n , an increment instruction which is capable of an

indirect reference. Since we have a pointer to the parameter ,

- ii-

Report No. 3972 Bolt Beranek and Newman Inc.

and the increment is small , we can do the address manipulation on

the stack.

2.3.3.2 Calling a Global Routine

Both ve r s ions are e f f e c t i v e l y e q u i v a l e n t .

2.3.3.3 Returning From a Routine

Both versions are fine; the Z8000 has a conditional return

tha t checks the state of the con dition codes , an interesting

idea.

2.3.3.14 Saving and Restoring Registers

The PDP— il version uses a standard PDP— 11 technique for

sav ing registers: a global routine is called that does the save

and then does a coroutine return so that when the routine

finishes the registers will be restored automatically. In all

cases except the save of one register , on all PDP— il models , this

techn ique is faster and produces less code. A more traditional

technique would look like :

MOV R 1 ,(SP)— ; Allocate: Register
MOV R2 , (S P) — ; and another
<r o u t i n e body >
MOV + (S P) , R2 ; Deallocate : Register
MOV + (S P) , R i ; and a n o t h e r

We w i l l a s sume t h i s is the technique used by the PD P— ii

vers ion of the benchmarks. It is interesting, however , to note

that corout ine linkages are not a natural programming primitive

prov ided by the Z8000 .

- 12 —

Repor t No. 3972 Bolt B eranek and Newman I n c .

The Z8000 register saves are now identical to the PDP— 11

technique. The existence of a block register transfer

instruction is somewhat irrelevant since it copies upward in

memory wh~ le the stack grows downward . This means to use it you

must first align the stack pointer . In most cases it is easier

to use push and pop instructions.

• 2.3.3.5 Local Space Allocation and Deallocation

In both versions this is a simple addition or subtrac tion

from the stack po inter.

2.3.3.6 Settin g Up Parameters for the Call

The PDP— 11 version proceeds by pushing the offset from the

stack pointer to the array onto the stack and then adding the

stack pointer to it.

The nice qual ity of this operation is the addition that is

1. done on the stack. Th is sing le ad di t ion might hav e cost a

register allocation , a move of the stack pointer , an addition ,

and then the deallocation of the register. The Z8000 version

mana ges the same feat via the increment instruction.

I I 2.3.3.7 Making Parameters Accessible

In these exam ples this category means getting the parameters

off the stack and into the registers. Both versions have little

trouble with this.

- 13 -

Repor t No . 3972 Bolt Beranek and N e w m a n I n c .

2 .3 .3 .8 A Typica l Loop I t e r a t i o n

The loop cons i s t s of four parts: addition , pointer

advancement , counter decrement , and conditional branch. The

PDP— 11 version is able to combine the first two , while the 28000

version is able to combine the second two .

The Z8000 vers ion is more attractive in some ways. The

PDF— 1 i attitude was that the branch would be able to use the last

data manipulation result via the condition codes to drive the

branching decision. This has not turned out to be true and has

often caused practices such as placing a zero value on the end of

arrays to act as a flag . The decrement and skip on zero

instruction provided by the Z8000 is better ; it would be even

better , of course , if it had some range of increments , and

c o n d i t i o n codes .

2.3.4 C o n c l u s i o n s f rom the Benchmar k

The tables below compare three machines: the LSI—1 1 , the

Z8000 runnin g in nonsegmented mode , and the Z8 000 running in

segmented mode. The LSI— 11 is a machine that addresses 2~ 16

bytes naturally, as is the Z8000 running in nonsegmented mode ;

the Z8000 runnin g in segmented mode can address 2~23 bytes and

hence is slowed somewhat by having to manipulate larger

addresses.

The first table below shows cod e size , memory fetches , and

execution times for all three machines . All fetch counts are in

.~~~~~~~~~~~~~~~

Report No. 3972 Bolt Beranek and Newman Inc.

16—bit words , all code sizes are in 1 6— b i t words , and all

e x e c u t i o n t imes are in mic roseconds .

LSI— 11 Nonsegmented Z8000 Segmented Z800
• Category Time Size Fetch Time Size Fetch Tim e Size Fetch

Call 6.95 2 2 1.75 2 2 2.5 3 3
Ret 5.25 1 2 1.5 1 2 2.25 1 3
Sav+Res 20.3 14 8 7.0 14 8 8.5 14 10
Farm Set 19.6 5 9 6.0 14 8 6.75 14 9
Farm Acc 12.3 14 6 5.0 14 6 6.5 4 7
Loop 12.6 3 14 3.75 3 14 3.75 3 11
Lo~ Allc 14. 9 2 2 1 .75 2 2 1.75 2 2
Loc Dal i 14.9 2 2 1.75 2 2 1.75 2 2

The nex t t ab l e c o n t a i n s the same v a l u e s c o n v e r t e d to

p e r c e n t a g e s of t h e i r L S I — 1 1 e q u i v a l e n t s .

Nonsegmen ted Z8000 Segmented Z8000
Ca tego ry Time Size Fe tches Time Size Fe tches

Cal l 25 100 100 36 150 150
Re t 28 100 100 143 100 150
Sav÷ R es 314 7 00 100 142 100 125
Farm Set 31 80 89 314 80 100
Farm Acc 38 100 100 149 100 117
Loop 29 100 100 29 100 100
Loc Allc 36 100 100 36 100 100
Loc Dalic 36 100 100 36 100 100

Averages 32% 98% 98% 38% 1 014% 118%

In summary:

— The cod e d e n s i t y of the 28000 is very s i m i l a r to t h a t of a

P D P — 1 1 .

— The e x e c u t i o n speed of the Z800 0 is about 3 t i m e s t h a t of an

L S I — 1 1 .

— 1 5 —

Report No. 3972 Bolt Beranek and Newman Inc.

— It is straightforward to code those things that prog rams do

most o f t e n .

— A few nonuniformities in the Z8000’s instruction set will

make code generation more difficult than for the PO P— il , but

in genera l not too much more difficult.

_
_

Repor t No. 3972 Bolt Beranek and Newman I n c .

3. Processor Node Issue s

• The p rocess ing node cons is t s of 5 pieces : a processor ,

memory, memory mana gement , local I/O , and the swi t ch i n t e r f a c e .

We will consider each of these components in turn.

3.1 The Processor

Althou gh it now seems very l ikely that the initial design

will use a Zilog Z8000 processor , it is useful to examine not

just the characteristics of that specific processor , but also

those attributes of an abstract processor that might affect the

design of the processing node , for example:

— How f a s t is i t?

— Does it m u l t i p l e x its address and da ta or are they

presen ted s i m u l t a n e o u s l y ?

— Does the processor do its own r e f r e s h i n g or w i l l e x t r a

hardware be re quired?

— How wide is the word?

— How wide is an address?

— Are there m u l t i p l e p r o t e c t i o n modes?

— How does the processor i n t e r a c t w i th I/ O?

— A r e I/O addresses in a s e p a r a t e addres s space?

— What a r e the p r o v i s i o n s for i n d e p e n d e n t DMAs and how do

these i n t e r a c t w i t h the processor and memory m a n a g e r ?

— How does the i n t e r r u p t system work?

- i 7 -

I

Report No. 3972 Bolt Beranek and Newman I n c .

There are some pr imi t ives which are s p e c i f i c a l l y impor tan t

for a mu l t i p roces so r such as a f a c i l i t y for “ lock ing ” , e . g . , a

test and clear i n s t ruc t io n or some semaphore p r i m i t i v e s . At

least some kind of r e a d — m o d i f y — w r i t e bus opera t ion is needed in

order to guaran tee i n d i v i s i b i l i t y .

An impor tant issue has to do w i th how closely t ied the

processor is to i ts memory . In th is system , the processor may

have to wa it significant periods of time for the datum fetched .

Most processors includ e some kind of “wa it” input , but these d o

not always operate easily or smoothly. In this case , we have the

further complication that the wait time may be quite significant

(as requests traverse the switch). If the wait state interferes

with real—time operations , e.g., refreshing memory , there may be

a problem . Those processors which “wait” by stopping their clock

may have a maximum wait time imposed by the constraints of

i n t e rna l dy n a m i c memory .

3 .2 Memory

The memory in each processor node serves not on ly as the

local memory fo r the processor and I/O in t ha t processor node but

also as a por t ion of the global memory space which is accessible

f rom any processor node .

Perhaps the l a rges t problem in d e s i g n i n g the memory for the

processor node is p e r m i t t i n g fl e x i b i l i t y in memory s ize w i t h o u t

m o u n t i n g the memory components on a separa te board .

— 18 —

— •~~~~~~~~~ -.—•‘

Report No. 3972 Bolt Beranek and Newman I n c .

The technology used for the memory c i r c u i t r y is r a the r

straightforward . Dynamic semiconductor memories are dense and

i n e x p e n s i v e . The problem of r e f r e sh is solved by the Z8000

processor , l eav ing only t im ing and error control .

Error control is the most d i f f i c u l t ques t ion . The c u r r e n t

i n d u s t r y wisdom holds tha t large d ynam ic memo ry systems nee d

error detection AND correction (EDAC). A Voice Funnel , however ,

can have many in d epen d ent processor no d es , each w i th its own

memory mo dules. If one or two are down in the system as a whole ,

that is not a big loss. An appropriate memory management scheme

should be able to isolate the a p p l i c a t i o n so f tware from memory

f a i lu res . This s imp l i f i e s our r e q u i r e m e n t to only a s imple

method of d etect ing memory e r rors , e.g., parity. We do not have

to spend the relatively larger cost increment for single bit

correct ion (5 bits on a 16—bit word is a 32% increase in memory

pr ice alone , w ithou t cons id er in g the correct ion logi c itself or

any access time delay imposed).

3.3 Memory Ma~ agement

The purpose of memory management is to separate the virtual

add ress space seen b y the processor from the ac tua l memor y

configurat ion , the physical address space. The memory manager

serves as an interface between these two spaces , t r a n s l a t in g

(mapping) virtual addresses into physical addresses. The time

of the map ping is also a convenient one to do some ancillary

functions , like protection. There are many reasons for providing

— 19 —
- • -

• Repor t No. 3972 Bolt Beranek and N ewman I n c .

such a separa t ion but the main idea is to isolate the p rog rammer

from the vaga r i e s of the h a r d w a r e . The program should be

i n s e n s i t i v e to what process ing nodes or memory modules a c t u a l l y

exist , or even where a particular piece of data actually resides.

The programmer tags a “thing ” (cod e page , data s t r u c t u r e , wor d of

• memory , etc .) with an invariant name (its virtual address) . The

job of the memory management system is to make su re tha t when

tha t v i r t u a l add ress is r e f e r enced , i t is d ir ec t ed to the prop er

• pl ace.

The system t h a t we choose is a s imple one . The phys ica l

address (as ou tpu t by the memory m a n a g e r) is s u f f i c i e n t to locate

any wo rd in any process ing node in the e n t i r e m a c h i n e . That is ,

encoded wi th in it is a process ing nod e number and a location

w i t h i n the memory of t h a t processing node. A process selects

wh ich objects it needs to r e f e r ence and , wi th the ass is tance of

the o p e r a t i n g e n v i r o n m e n t , the local memory mana ge r is set up

wi th the phys ica l addresses of those objects. When an access is

mad e , the memory manager conve r t s the v i r t u a l address to a

phys ica l address and s imple address r e c o g n i t i o n logic decides if

that is located in this processing node. If not , the physical

address is handed to the switch interface which tries to get that

data by sending out an appropriate transaction on the switch.

When th i s reaches the d e s t i n a t i o n process in g node , the incoming

request for a word has a phys ica l address c o n t a i n e d in the

reques t ing t r a n s a c t i o n . Thus the swi tch i n t e r f a c e can d i r e c t l y

access the local memory for the word and r e t u r n i t .— 20 —
_

Report No. 3972 Bolt Beranek and Newman Inc.

A compl ication arises should the operating environment

decide to move an object to a different physical address. In

tha t case , all the memory mana ge r s which conta in a po in te r to

H th is object mus t be updated . The ope ra t i n g env ironment can do

th is by i n f o r m i n g each process ing nod e each t ime it wishes to

make such a change . If we were p l ann ing a c lass ic pag in g system ,

with pages of memory mov ing about al l the t ime , th is woul d not be

a good scheme. As it is , we d o not e n v i s i o n the need to move

t h i n g s a round ve ry much , and so th i s safe , easy to u n d e r s t a n d

mechanism should not be a b u r d e n .

Zilog is p l a n n i n g to i n t roduce a memory managemen t chip to

per fo rm some of these f u n c t i o n s . It accepts 2 3— bi t v i r t u a l

addresses: 7 b i t s of “ segment” and 16 b i t s of d i s p l a c e m e n t w i t h i n

tha t segment . The ou tpu t is a 2 4 — b i t phys i ca l address . (Al l

H addresses are in terms of b y t e s .) For each segment , a n i n t e rn al

memory c o n t a i n s :

• 16 bi ts of o f f s e t (i n u n i t s of 2**8 by te s)

8 b i t s of size (i n un i t s of 2**8 b y t e s)

8 b i t s of a t t r i b u t e s :

R/W vs . R on ly
system vs. user
execute vs . da ta
exclud e DMA
inva l i d e n t r y
segment changed
segment re fe renced
something else

— 21 —
g~4

Repor t No. 3972 Bolt Beranek and Newman Inc.

Al though the basic functionality of this device seems to

meet our needs , there is some ques t i on about whether the v ir tua l

and phys ica l address spaces are large enough. A 214—bit physical

address seems l ike a lot , bu t if we have 64 K words of memory in

each node , tha t l imi t s us to 128 nodes . This is c e r t a i n l y

adequate for our immedia te needs and looks as if it can eas i ly be

expanded if’ future needs dictate. On the v i r t u a l side , we are

l imi ted to 128 ac t ive segments at any t ime . Our cu r r en t

expec t a t i on is tha t th i s wi l l be adequa te . In any case , the

addre ss spaces o f f e r e d by the Z8000 and i ts memory m a n a ger are

much larger than anything offered by other microprocessors.

3.4 Local I/O

The key idea here is to lever our e f f o r t by t a k i n g m a x i m u m

a d v a n t a ge of the devices o f f e r e d b y the processor ’ s m a n u f a c t u r e r .

By using the units that the processor expects , we benef it from

the m a n u f a c t u r e r ’ s e f•forts to ensure t ha t they i n t e g r a t e well and

work toge ther p r o p e r l y .

In our case , Zi l og is deve lop ing a l i ne of I/ O dev ices w h i c h

can be a t t ached to the 2 —Bus (the Z8000 I/O bus). For the many

vocoder interfaces , we w i l l pro b ab ly use the Z—S I O , a serial I/O

device capable
*

of’ interfacing asynchronous , bit—stuffing

s y n c h r o n o u s , and byte—stuffing synchronous protocols. It should

be possible to program this device to support a very wide range

of voco der types. Should we need some very low level processing

assoc iated with an I/O interface , we can use the Z—UPC , an

- 2 2 -

Repor t No . 3972 Bolt Beranek and Newman Inc .

in tegra ted processor , memory , and I/O ch ip (a c t u a l l y a Z—8) t ha t

is interfa ced to the Z—Bus.

For the h igh b a n d w i d t h connec t ion , the Z—SIO is too slow

since its m a x i m u m ra te is on ly 800 kbps . P robab ly the best

choice is some custom logic a t tached to a Z — MB U , a FIFO wi th

i n t e r f a c e logic which also a t t aches to the Z — B u s .

3.5 Switch Interface

Before we discuss the switch interface , it is important to

di st in gu ish between two metho d s of us in g the sw itch: one is

word—at— a—time , the other is via messages. In a tightly coupled

m u l t i processor , the processor o f t e n w a n t s to access d i s t a n t

memor y in the same way it accesses a word in local memory.

Notice that in this model , the processor is pass ive as the

transact ion is manipulated .

In a message—based system , a process in g no d e is a

self—suff icient unit which actively communicates with other

processin g nodes. Processor instructions (or microcode)

explic itly set up a message and send it out . A processing nod e

woul d presumably always have a buffer set up for incoming

messages. Upon receipt of one , the processor woul d be

in t e r r u pte d , and would explicitly deal with th~ messa ge. As an

exam ple , these messages coul d be of the form “please give me wo rd

x ” . Presuma bly, it would be more effic ienL to send requests at a

higher level of abstraction , i.e. ask to do more complicate d

thin gs.

— 23 -

Repor t No. 3972 Bolt Beranek and Newman Inc.

Let us look at what the word—at—a—tim e model implies . First

consider a processor r eques t . The memory manager mus t dec ide

whether the word des i red is in local memory (or I / O) space. If

not in th is process ing node , it signals the switch interface that

th is is a request which it mus t deal w i t h . The processor is told

• to wai t and the swi tch i n t e r f a c e forms up the message . The

l a t t e r procedure consists of taking the physical address output

by the memory management and con ca tena t ing it wi th some

a p p r o p r i a t e leader and t r a i l e r i n f o r m a t i o n . When the r e su l t

r e t u r n s (we know it is a r esu l t from a p r ev ious access because of

some type codes) , the swi tch i n t er f a c e h a r d w a r e hands the result

to the processor and a l lows the processor to con t i nue .

A message model , on the o ther hand , impl ies some h a r d w a r e

wh ich is more l ike a DMA d e v i c e . The processor would tell the

swi tch i n t e r f a c e the l im i t s of the message in memory . The swi tch

i n t e r f a c e would then send an app ropr i a t e l eade r and then pul l the

wor ds out of memory as they were neede d to be sent out to the

swi t ch . A r e c e i v i n g side of the interface would also have b u f f e r

po in te r s in to memory ; when a t r a n s a c t i o n s tar ted a r r i v i n g from

the swi tch , words would be dumped in to memory . On comp le t ion ,

the processor would be i n t e r r u p t e d .

We have d iscussed the messa ge type switch interface as if it

all l ived in phys ica l space. Another possibility is that the

D M A — l i k e dev i ce is j u s t l ike a ny o ther I/O d e v i c e and sends i ts

“ requests ” (t o send words out the swi tch i n t e r f a c e) t h r o u g h the

memory management box .

— 24 —

Report No. 3972 Bolt Beranek and Newman Inc.

So what jobs must the switch interface do? (Let us assume

for the moment that we are us ing the word— at— a—time model.)

There are 3 kinds of transactions:

1. The processor accesses distant memory.

2. A result from an access of type 1 returns and is

de l ive red to the processor .

3. A request from some other processing nod e requests a

word from this local memory.

Typ es 1 a.nd 2 in te r loc k comple te ly ; on ly one reques t can ever be

ou t s t and ing at any t ime and a type 1 can never be issue d u n t i l
• the m a t c h i n g type 2 for the prev ious type 1 occurs. (N.B. This

is NOT so t rue if there are m a s t e r — t y p e I/O dev ices and the

processor can be held up w i t h o u t t y i n g u p the bus , e.g., it uses

a t r ansac t ion bus.) Type 3 accesses , however , can ha pp en at any

t ime and in any quantity. Note also that type 3 accesses

conflict with both types 1 and 2. There must be some internal

f low control mechan ism wh ich d oes not a l low an access if it

confl icts with one already in progress.

The memory also sees another k ind of access which we can add

to the above list :

14. Processor accesses local memory.

Notice the small number of’ possible accesses between the

processor , the memory, and the switch interface. Each of the

three destinations has at most two sources as follows:

Report No. 3972 Bolt Beranek and Newman Inc.

Destination Source Type

Memory Processor 14

Memory Switch (R) 3

S w i t c h (T) Processor 1

S w i t c h (T) Memory 3
Processor Memory 14

Processo r Switch (R) 2

Since there are only a small number of combinations and it

is easy to state which actions are not allowed when others are

occurrin g, the hardware which implements the switch interface can

be very simple.

How does a message transaction fit in to this description ?

The switch inter face must start the transact ion through the

switch , and then continue to get (or put) words from (into)

memory as the message flows throu gh. How does the speed of the

switch compare with that of memory? There may well be delays at

the beginning of sending a message , as the header encoun ters

conflicts and tries to blaze a path through the switch , but once
• tha t has occurred , the message can then flow . At this point , if

the switch is slower than memory, the memory must be idle. If

the switch is faster than memory, we have accom plished nothing,

except c r e a t i n g the necess i ty for a flow—control mechanism and

causing more conflicts in the switch. Thus we can assume that

the memory and switch speed s are closely matched .

— 26 —
~~L

-
~~~~~~ 

Li



Report  No.  3972 Bolt Beranek and Newman Inc .

A co ro l l a ry  to this  is tha t  when a message is “ s t reaming ” ,
- no other  accesses can occur to the processing node ’ s memory .  We

-- must  make sure  tha t  t h i s  does not a f fe c t  other r ea l—t ime

dependent  f u n c t i o n s , such as se rv ic ing  a r o t a t i n g  memory ,  etc .

• We have  a pa r t i cu l a r  problem with memory refresh , but if the

memory design allows , we can take a d v a n t a g e  of the fact  t h a t

switch I/O will be to consecutive addresses and thus may be able

to per form the r e f r e sh  d i r e c t l y .

At th i s  t ime , it seems tha t  both the word—at— a— time model

• and the message model are relevant. The wo rd—at— a— time model

permits tight coupling and low delay while messages are critical

to high bandwidth transfers; it is our current intention to

support both models in the hardware.

— 27 —



Report  No.  3972 Bolt B eranek and Newman I n c .

DISTRIBUTION OF THIS REPORT

Defense  Advanced Resea rch  P ro j ec t s  Agency

Dr.  Rober t  E.  Kahn (2 )

Defen se  Sup ,piy Service —— W a s h i n g t o n

Jane D. Hensley (1)

Defense Documentation Center (12)

Bolt Beranek and Newman Inc. ]
L ib r a ry

L i b r a r y ,  Canoga Park  O f f i c e  ~1
R. Brooks

P. Castlemari

W. Clark

F. Heart

D. Hunt

B. Hyde

M . Kra l ey

R.  Re t tbe rg

E. Starr

D. Wa lden

E. Wolf

C. Wyman


